Quandle coloring and cocycle invariants of composite knots and abelian extensions.

نویسندگان

  • W Edwin Clark
  • Masahico Saito
  • Leandro Vendramin
چکیده

Quandle colorings and cocycle invariants are studied for composite knots, and applied to chirality and abelian extensions. The square and granny knots, for example, can be distinguished by quandle colorings, so that a trefoil and its mirror can be distinguished by quandle coloring of composite knots. We investigate this and related phenomena. Quandle cocycle invariants are studied in relation to quandle coloring of the connected sum, and formulas are given for computing the cocycle invariant from the number of colorings of composite knots. Relations to corresponding abelian extensions of quandles are studied, and extensions are examined for the table of small connected quandles, called Rig quandles. Computer calculations are presented, and summaries of outputs are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cocycle Knot Invariants from Quandle Modules and Generalized Quandle Cohomology

Three new knot invariants are defined using cocycles of the generalized quandle homology theory that was proposed by Andruskiewitsch and Graña. We specialize that theory to the case when there is a group action on the coefficients. First, quandle modules are used to generalize Burau representations and Alexander modules for classical knots. Second, 2-cocycles valued in non-abelian groups are us...

متن کامل

Minimal Numbers of Fox Colors and Quandle Cocycle Invariants of Knots

Relations will be described between the quandle cocycle invariant and the minimal number of colors used for non-trivial Fox colorings of knots and links. In particular, a lower bound for the minimal number is given in terms of the quandle cocycle invariant.

متن کامل

Extensions of Quandles and Cocycle Knot Invariants

Quandle cocycles are constructed from extensions of quandles. The theory is parallel to that of group cohomology and group extensions. An interpretation of quandle cocycle invariants as obstructions to extending knot colorings is given, and is extended to links component-wise.

متن کامل

Generalizations of Quandle Cocycle Invariants and Alexander Modules from Quandle Modules

Quandle cohomology theory was developed [5] to define invariants of classical knots and knotted surfaces in state-sum form, called quandle cocycle (knot) invariants. The quandle cohomology theory is a modification of rack cohomology theory which was defined in [11]. The cocycle knot invariants are analogous in their definitions to the Dijkgraaf-Witten invariants [8] of triangulated 3-manifolds ...

متن کامل

Ribbon Concordance of Surface-knots via Quandle Cocycle Invariants

We give necessary conditions of a surface-knot to be ribbon concordant to another, by introducing a new variant of the cocycle invariant of surface-knots in addition to using the invariant already known. We demonstrate that twist-spins of some torus knots are not ribbon concordant to their orientation reversed images.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of knot theory and its ramifications

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 2016